PH16212, Homework 1

Deadline: Sep. 25, 2019

1. For any four null vectors, p_i , p_j , p_k , p_l , we define the Parke-Taylor factor as

$$PT(i, j, k, l) \equiv \frac{1}{\langle ij \rangle \langle jk \rangle \langle kl \rangle \langle li \rangle} \,. \tag{1}$$

Use Schouten identity to prove that

$$PT(1, 2, 3, 4) + PT(1, 3, 2, 4) + PT(1, 3, 4, 2) = 0.$$
 (2)

2. We have a gluon with the momentum $p^{\mu} = (1, 0, 0, 1)$. $v^{\mu} = (1, 1, 0, 0)$ is a "reference" vector. Use spinor helicity formalism, construct the (+1)-helicity polarization vector ϵ_+ and (-1)-helicity polarization vector ϵ_- such that

$$p \cdot \epsilon_{\pm} = 0, \quad k \cdot \epsilon_{\pm} = 0, \quad \epsilon_{\pm}^2 = 0, \quad \epsilon_{+}^{\mu} \epsilon_{-\mu} = -1.$$
 (3)

Write down the Lorentz components of ϵ_{\pm}^{μ} .

3. We have a gluon with the momentum p_1^{μ} . Suppose that we used two different "reference" vectors, p_2 and p_3 ($p_2^2 = 0$, $p_3^2 = 0$), to construct the polarization vectors,

$$\epsilon_{1,+}^{\mu} = \sqrt{2} \frac{(\lambda_2 \lambda_1)^{\mu}}{\langle 21 \rangle}, \quad \tilde{\epsilon}_{1,+}^{\mu} = \sqrt{2} \frac{(\lambda_3 \lambda_1)^{\mu}}{\langle 31 \rangle}, \tag{4}$$

Prove that

$$\epsilon_{1,+}^{\mu} - \tilde{\epsilon}_{1,+}^{\mu} = -\sqrt{2} \frac{\langle 23 \rangle}{\langle 21 \rangle \langle 31 \rangle} \times p_1^{\mu} \,. \tag{5}$$

You need to use properties of Pauli matrices.

4. For four vector p_1, p_2, p_3, p_4 , we define $\epsilon(1, 2, 3, 4) \equiv \epsilon^{\mu_1 \mu_2 \mu_3 \mu_4} p_{1\mu_1} p_{2\mu_2} p_{3\mu_3} p_{4\mu_4}$ where ϵ is the anti-symmetric tensor in 4D. We may further define that the Gram matrix as a 4×4 matrix G(1, 2, 3, 4),

$$G(1,2,3,4)_{ij} \equiv p_i \cdot p_j, \quad 1 \le i,j \le 4.$$
 (6)

Its determinant is $g(1,2,3,4) = \det G(1,2,3,4)$. Prove that

$$g(e_1, e_2, e_3, e_4) = -\epsilon(i, j, k, l)^2.$$
(7)

6. Consider the four-point massless kinematics, $p_1^2 = 0$, $p_2^2 = 0$, $p_3^2 = 0$, and $p_4^2 = 0$. Here $p_1 + p_2 + p_3 + p_4 = 0$. Use momentum twistors to convert

$$\frac{[13][24]}{[14][23]} \tag{8}$$

to a function of s and t.